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Three-dimensional curved flames: Stationary flames in cylindrical tubes
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Curved axisymmetric stationary flames in cylindrical tubes are investigated on the basis of a model nonlinear
equation for a flame front subject to the Landau-Darrieus instability. It is found that the increase of the flame
velocity due to a curved shape of the front is much larger for the case of three-dimensional curved flames
compared to the two-dimensional ones. Some of important properties of curved three-dimensional flames differ
qualitatively from the properties of two-dimensional flames. Particularly, a regime of strong initiation of the
Landau-Darrieus instability in narrow tubes is obtained, when all perturbation modes of small amplitudes are
stable, but a curved stationary flame is still possible. Another important feature of the three-dimensional flame
propagation is unlimited increase of the flame velocity with the increase of the tube diameter.
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As it has been observed experimentally@1–3# and in two-
dimensional~2D! simulations@4,5#, premixed flame fronts in
tubes usually acquire a curved shape instead of a m
simple planar configuration. Quite often the curved fla
shape is caused by the development of the hydrodyna
Landau-Darrieus~LD! instability of a flame front@1#, which
bends an initially planar front. It is well known@6–8#, that on
the linear stage of the LD instability small perturbations o
planar flame front grow exponentially}exp~st1 ik–x! with
the instability growth rates depending on the perturbatio
wave numberk as

s5SUf~ uku2k2lc/2p! , ~1!

whereUf is the velocity of a planar flame front, the coeffi
cientS is a function of the ratioQ of the fuel density and the
density of the burnt matterS5Q(AQ1121/Q21)
/Q11. The growth of perturbations of a small amplitude
suppressed by thermal conduction, if a perturbation wa
length l52p/uku is shorter than the cut-off wavelengthl
,lc . As usual the cut-off wavelength exceeds the fla
thickness considerably.

Propagation of curved flames resulting from the LD ins
billity in initially uniform fuel mixtures is traditionally de-
scribed by the model nonlinear equation@9–12#

] f

]t
1

a~Q!

2
Uf~¹ f !25SUf S Î ~ f !1

lc

2p
¹2f D , ~2!

where the shape of a curved flame front propagating al
thez axis is given byz5 f (x,t)2Uft. The integral operator
Î in Eq. ~2! is defined as

Î ~ f !5
1

4p2E
2`

`

uku f kexp~ ik–x!dk , ~3!

where f k is the Fourier transform off . The linear terms in
Eq. ~2! give the dispersion relation of the LD instability o
the planar flame front, Eq.~1!, with the influence of small
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but finite flame thickness described by the term proportio
to the cut-off wavelengthlc . The nonlinear term in Eq.~2!
takes into account the interaction of modes of considera
amplitude. Originally, a nonlinear equation for a curv
flame analogous to Eq.~2! has been derived in@9# for the
complete set of hydrodynamic equations for a flame fro
but the peculiar limit of a small expansion coefficientQ
21!1 ~and almost planar flame shape! has been assumed i
the derivation. In the original equation one has the coe
cientsS' 1

2(Q21) anda'1. Since the paper@9# there has
been always a problem how to extrapolate the results of
nonlinear equation depending strongly on the coefficienta to
the realistic case of large expansion coefficientsQ55210.
The lack of a reliable estimate fora made impossible the
comparison of the results of Eq.~2! to results of experiments
and direct numerical simulations.

To find the correct value of the coefficienta in Eq. ~2! we
compare the analytical solution@10# of the 2D version of Eq.
~2! and the results of the 2D numerical simulations of flam
dynamics in a tube for the complete set of the hydrodyna
cal equations@5#. According to the analytical solution@10#
the velocity Uw of a 2D curved stationary flamef (x,t)
5F(x)2(Uw2Uf)t in a tube of widthR with ideally slip
and adiabatic walls may be written as

Uw5Uf14UmM
lc

2RS 12M
lc

2RD , ~4!

whereM5Int~R/lc1
1
2) and the maximal velocity increas

is Um5UfS
2/2a. Numerical simulations of flame dynamic

in an ideal 2D tube for the case of realistic expansion co
ficientsQ55210 demonstrated the same dependence of
flame velocity on the tube width as given by Eq.~4! with the
maximal velocity increase depending on the expansion c
ficient as

Um5
Uf

2

S2

Q S 11
S2

Q D . ~5!

Obviously, the solution of Eq.~2! coinsides with the results
R36 © 1997 The American Physical Society
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of 2D numerical simulations if one chooses the coefficiena
to be

a5
Q2

Q1S2
. ~6!

Such a choice makes it possible to compare the results o
~2! and the results of numerical simulations of flame dyna
ics for an arbitrary expansion coefficient.

In the present letter we use the modified nonlinear eq
tion ~2! to study the problem of axisymmetric curved thre
dimensional~3D! flames propagating in cylindrical tube
The configuration of a flame in a cylindrical tube is a co
mon experimental situation~e.g., @3,13#!, so that a curved
flame with axial symmetry provides a typical example o
3D curved flame. We obtain that the velocities of curved
flames are considerably larger than the corresponding ve
ties of 2D flames. We show that some important proper
of the curved 3D flames are qualitatively different from t
properties of 2D flames. Particularly, we obtain a regime
strong initiation of the LD instability in narrow tubes, whe
all perturbation modes of a small amplitude are stable, b
curved stationary flame is still possible. Another importa
point is the unlimited increase of the flame velocity with t
increase of the tube diameter.

Let us consider propagation of a curved axisymmetric s
tionary flame f (x,t)5F(r )2(Uw2Uf)t in a cylindrical
tube of a radiusR with ideally adiabatic walls. In this cas
the boundary conditions at the walls and at the tube a
becomedF/dr50 for r50,R. It is convenient to introduce
the dimensionless variables and parametersW5aS22(Uw
2Uf)/Uf , w5aF/(SR), z5r /R, d5Rc /R, where Rc
5a1lc/2p is the critical radius for which thermal conduc
tion suppresses growth of small perturbations,a1 is the first
of the rootsan of the equationdJ0(a)/da50, J0 is the
Bessel function of the zeroth order. For the introduced v
ables the nonlinear equation becomes

FIG. 1. The scaled flame velocitya(Uw /Uf21)/S2 vs the in-
verse tube radiusd5Rc /R for the convex flames~curve 1!, con-
cave flames~curve 2!, and the 2D curved flames~curve 3!. The
markers show the results of numerical simulation of curved flam
in tubes forQ55; the squares, the circles, and the triangles co
spond to the convex, concave, and 2D flames, respectively.
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2S dw

dz D 25 Î ~w!1
d

a1

1

z

d

dzS z
dw

dz D . ~7!

Because of the boundary conditions at the walls any solu
of Eq. ~7! may be presented as a sum of Bessel functions
zero orderw5(wnJ0~anz!, so that the integral operato
takes the formÎ (w)5(anwnJ0~anz!. To find the latter for-
mula one has to expand a planar wave exp(ik–x) in terms of
the Bessel functions and calculate the appropriate co
cients. However, an easier way to obtain the action of
operatorÎ on a Bessel function is to repeat the derivation@9#
of Eq. ~2! step by step, taking into account the cylindric
geometry from the very beginning.

Equation~7! has been solved numerically. For a functio
w(z) presented as a sum of Bessel harmonics the unkn
amplitudeswn (n51,2, . . . ,N) have to be found as an eigen
vector of the eigenvalue problem with the eigenvalueW. The
numberN of the Bessel harmonics is determined by the
curacy requirements. The collocation technique@14# was
used in order to obtain the equations for the coefficientswn
and the scaled flame velocityW. Setting the right-hand side
of Eq. ~7! equal to the left-hand side in the collocation poin
z i5(2i21)/2(N11), i51,2, . . . ,N11, one obtains a sys
tem of algebraic equations for the unknown valuesW,wn .
The system of algebraic equations has been solved by it
tions. We start withd being close to unity and use the sol
tion w(z)5w1J0(a1z), W5 1

2w1
2J0

2(a1)a1
2 with

w15
J0
2~a1!~12d!

a1E
0

1

J0~a1z!J1
2~a1z!zdz

~8!

as an initial approximation. In order to find flame velocity f
tubes of larger radius 12d;1 the parameterd has been
changed slowly. Solving Eq.~7! for any new parameter valu
d2Dd we took solution for the previous valued as an initial
approximation. The convergency of the described numer
algorithm depends upon the problem parameterd: for narrow
tubes u12du!1 the convergency is rather good, while fo
wide tubesd50.120.2 one has to take into account up to 8
modes to obtain reliable results.

Results of the numerical solution of Eq.~7! are presented
in Figs. 1 and 2. The scaled velocity increaseUw /Uf21 of
a curved stationary flame in a cylindrical tube is shown
Fig. 1 versus the scaled inverse tube radiusd5Rc /R. The
velocity of a curved 2D flame in a tube with ideal walls Eq
~4! and ~5! is presented in Fig. 1 for comparison. It is se
from Fig. 1 that for the case of a cylindrical tube two sol
tions are possible with larger and smaller velocity increa
These solutions correspond to the configurations of a con
flame front~the solution with the larger velocity! and a con-
cave flame front~the solution with the smaller velocity!. The
typical shapes of the concave and convex flames are sh
in Fig. 2 for the parameter valued50.5. The velocity in-
crease for a curved 3D flame is much larger than the velo
increase for a 2D flame. Particularly, ford50.5 when the
curved flame front results from the development of pertur
tions of a wavelengthl52lc the increase of the flame ve
locity for a convex 3D flame is almost doubled compared
the velocity increase of a 2D flame. For a flame in a gase
fuel with expansion coefficients as large asQ510 it implies
that the velocity of a curved 3D flame may increase by qu
a noticeable factorUw'1.7Uf .
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FIG. 2. The shapes of the convex~a! and concave~b! curved flames with cylindrical symmetry for the parameter valued5Rc/R
50.55.
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Figure 1 demonstrates that there are some features o
curved flames which are qualitatively different from that
2D flames. One of them is the existence of curved axisy
metric stationary flames for narrow tubesR,Rc (d.1). For
such a narrow tube all small perturbations of a planar fla
front permitted by the boundary conditions at the tube wa
belong to the stable domain of the dispersion relation Eq.~1!.
By this reason curved stationary flames obtained ford.1
may be interpreted as possibility of strong initiation of t
LD instability in 3D configurations. Strong initiation implie
that a flame front is stable against perturbations of an infi
tesimal amplitude, while perturbations of some finite amp
tude may grow with time and lead to the configuration o
curved stationary flame.

The dependence of the flame velocities on the tube ra
is also quite different for the 2D and 3D curved flames. T
difference is especially well pronounced for the concave
flame, which exhibits monotonous increase of the flame
locity with the increase of the tube radius. In this sense
dependence of the convex flame velocity on the tube ra
presents some features of a 2D curved flame and some
tures of a concave flame. For tubes of moderate width
velocity dependence for the convex flame exhibits lo
maxima and minima like the velocity of a 2D curved flam
The points of maxima and minima of the convex flame v
locity found numerically can be associated with the critic
points of the Bessel functionJ0: d5a1 /a2'0.546; d
5a1 /a3'0.376;d5a1 /a4'0.288, etc. For wide tubes th
velocity of a convex flame increases monotonously with
tube radius similar to the concave flames. At the same t
the increase of the flame velocity cannot be identified as
velocity increase expected for the fractal flames in w
tubes@15–17#: all calculated velocities correspond to smoo
flame shapes with one hump or one cusp at the tube a
while the fractal structure implies many cascades of hum
and cusps of different sizes, imposed one on another.

Figure 1 shows the velocities of curved stationary axisy
metric flames with only one cusp or one hump when the fi
D

-

e
s

i-
-

us
e

-
e
s
ea-
e
l
.
-
l

e
e
e
e

is,
s

-
t

Bessel harmonic is the principal onew1Þ0. For sufficiently
wide tubes~sufficiently smalld) smooth solutions of Eq.~7!
with w150 are possible, which have several humps a
cusps. Obviously, velocities of such solutions may be
tained from the velocity shown in Fig. 1 by the appropria
scaling of thed axis.

Since Eq.~2! is just a phenomenological extrapolation
a nonlinear equation derived in the peculiar limit of a sm
expansion coefficientQ21!1 @9#, one may doubt if the de-
scribed properties of curved axisymmetric 3D flames are
just an artifact of the nonlinear model. To check this w
performed numerical simulations of curved axisymmet
flames in cylindrical tubes for the complete set of the hyd
dynamic equations of a reacting flow. The numerical co
implements finite volume approximation of the hydrod
namical equations; see@5# for the details of the code and th
numerical method. The numerical simulations of curved a
symmetric flames in cylindrical tubes support the physi
results obtained on the basis of Eq.~2! ~see Fig. 1!. Thus, the
solution of the generalized nonlinear equation~2! provides a
good approximation for the flame velocity and may be he
ful in complicated 3D configurations, when direct numeric
simulations consume too much time.

Among the obtained properties of the curved 3D flames
cylindrical tubes the unlimited increase of the flame veloc
with the increase of the tube radius is of special physi
importance, since it implies that the flame velocity in wid
tubes may become much larger than the velocity of the p
nar laminar flame. In a sense, it may be one of the expla
tions of the spontaneous flame acceleration and the det
tion triggering by the accelerating flames in tubes, which h
been observed many times in experiments@1#.
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