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Three-dimensional curved flames: Stationary flames in cylindrical tubes
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Curved axisymmetric stationary flames in cylindrical tubes are investigated on the basis of a model nonlinear
equation for a flame front subject to the Landau-Darrieus instability. It is found that the increase of the flame
velocity due to a curved shape of the front is much larger for the case of three-dimensional curved flames
compared to the two-dimensional ones. Some of important properties of curved three-dimensional flames differ
qualitatively from the properties of two-dimensional flames. Particularly, a regime of strong initiation of the
Landau-Darrieus instability in narrow tubes is obtained, when all perturbation modes of small amplitudes are
stable, but a curved stationary flame is still possible. Another important feature of the three-dimensional flame
propagation is unlimited increase of the flame velocity with the increase of the tube diameter.
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As it has been observed experimentally-3] and in two-  but finite flame thickness described by the term proportional
dimensional2D) simulationg 4,5], premixed flame fronts in  to the cut-off wavelength... The nonlinear term in Eq2)
tubes usually acquire a curved shape instead of a mor@kes into account the interaction of modes of considerable
simple planar configuration. Quite often the curved flameamplitude. Originally, a nonlinear equation for a curved
shape is caused by the development of the hydrodynamitame analogous to Eq2) has been derived if9] for the
Landau-DarrieusLD) instability of a flame fronf1], which ~ complete set of hydrodynamic equations for a flame front,
bends an initially planar front. It is well knowit—8], that on  but the peculiar limit of a small expansion coefficie@t
the linear stage of the LD instability small perturbations of a—1<1 (and almost planar flame shag®s been assumed in
planar flame front grow exponentiallyexp(ot+ik-x) with  the derivation. In the original equation one has the coeffi-
the instability growth rater depending on the perturbation cientsS~3(®—1) anda~1. Since the papdi9] there has

wave numbek as been always a problem how to extrapolate the results of the
) nonlinear equation depending strongly on the coefficietd
o=SUs([k| =K\ /2m) (1) the realistic case of large expansion coefficigBts 5— 10.

) ) . The lack of a reliable estimate far made impossible the
whereU¢ is the velocity of a planar flame front, the coeffi- comparison of the results of E() to results of experiments
cientSis a function of the rati® of the fuel density and the 54 direct numerical simulations.
density of the burnt matterS=0(y0+1-1/0—-1) To find the correct value of the coefficieatin Eq. (2) we
/6 +1. The growth of perturbations of a small amplitude is compare the analytical solutida0] of the 2D version of Eq.
suppressed by thermal conduction, if a perturbation wave(p) and the results of the 2D numerical simulations of flame
length \ =2 /|k| is shorter than the cut-off wavelength  gynamics in a tube for the complete set of the hydrodynami-
<A.. As usual the cut-off wavelength exceeds the flameca| equationg5]. According to the analytical solutioftL0]
thickness considerably. the velocity U,, of a 2D curved stationary flamé(x,t)

Propagation of curved flames resulting from the LD insta-— F(x)—(U,— Ut in a tube of widthR with ideally slip
billity in initially uniform fuel mixtures is traditionally de- gnd adiabatic walls may be written as
scribed by the model nonlinear equati@-12| N
C

A
UW=Uf+4UmM—(1—M—C), (4

If  a(®) 2R 2R

a2

“ A
U(VF)2=SU; I(f)+ﬁV2f . ©

where M =Int(R/\.+ 3) and the maximal velocity increase
where the shape of a curved flame front propagating alon#§ Um=US*/2a. Numerical simulations of flame dynamics
the z axis is given byz= f(x,t) —U;t. The integral operator N an ideal 2D tube for the case of realistic expansion coef-
ficients® =5— 10 demonstrated the same dependence of the

| in Eq. (2) is defined as flame velocity on the tube width as given by E4) with the

R 1 (= maximal velocity increase depending on the expansion coef-
I(f)= mf |k|fexpik-x)dk, (3) ficient as
Us & s?
wheref, is the Fourier transform of. The linear terms in Um:76 + o 5

Eq. (2) give the dispersion relation of the LD instability of
the planar flame front, Eq1), with the influence of small Obviously, the solution of E¢(2) coinsides with the results
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LRI
dZ a; {df\~d¢
Because of the boundary conditions at the walls any solution

of Eq. (7) may be presented as a sum of Bessel functions of
zero orderep=3¢,Jo(a,{), so that the integral operator

takes the forrﬁ(cp):Eancano(ang). To find the latter for-

N mula one has to expand a planar wave &) in terms of

3 s \ the Bessel functions and calculate the appropriate coeffi-
cients. However, an easier way to obtain the action of the

I \ .
\\ \\A \\ !
~._ \ operatorl on a Bessel function is to repeat the derivati®h
L ‘.l....lu..l.\.\.‘.\l.\.\&/}.ﬂg of Eq. (2) step by step, takipg_into account the cylindrical
0.2 0.4 0.6 0.8 1 geometry from the very beginning. . '
: : ’ ’ Equation(7) has been solved numerically. For a function
R /R () presented as a sum of Bessel harmonics the unknown
amplitudesp, (n=1,2, ... N) have to be found as an eigen-
S vector of the eigenvalue problem with the eigenvaldeThe
\C/Z\ie ﬂt;zee;iﬂ'xi_;c ; r?df(t)k:eth;chg;/\Z dﬂ;;::;;fr\\i g CTOQE; numberN of the Bessel harmonics is determined by the ac-
‘ ' curacy requirements. The collocation technique] was

markers show the results of numerical simulation of curved flames

in tubes for® =5; the squares, the circles, and the triangles corre-used in order to obtain the equations for the coefficients

. and the scaled flame velocity. Setting the right-hand side
spond to the convex, concave, and 2D flames, respectively. of Eq. (7) equal to the left-hand side in the collocation points

{i=(2i—1)/2(N+1), i=1,2,...N+1, one obtains a sys-

of 2D numerical simulations if one chooses the coefficient tem of algebraic equations for the unknown valW¥se,, .

to be The system of algebraic equations has been solved by itera-
tions. We start withd being close to unity and use the solu-

02 tion ¢(£) = ¢1Jo(a1¢), W= 3¢333(as)as with

= g e (6) J3(a;)(1—6)
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FIG. 1. The scaled flame velocity(U,,/U;—1)/S? vs the in-

- ®)
ay J Jo(@:)I%(ar)¢d¢
Such a choice makes it possible to compare the results of Eq. 0
(2) and the results of numerical simulations of flame dynam-g an initial approximation. In order to find flame velocity for
ics for an arbitrary expansion coefficient. tubes of larger radius 4 6~1 the parametes has been

In the present letter we use the modified nonlinear equachanged slowly. Solving Eq7) for any new parameter value
tion (2) to study the problem of axisymmetric curved three- 5— A 5 we took solution for the previous valu®as an initial
dimensional(3D) flames propagating in cylindrical tubes. approximation. The convergency of the described numerical
The configuration of a flame in a cylindrical tube is a com-algorithm depends upon the problem paramétdor narrow
mon experimental situatiofe.g.,[3,13]), so that a curved tubes|1— /<1 the convergency is rather good, while for
flame with axial symmetry provides a typical example of awide tubess=0.1-0.2 one has to take into account up to 80
3D curved flame. We obtain that the velocities of curved 3Dmodes to obtain reliable results.
flames are considerably larger than the corresponding veloci- Results of the numerical solution of E() are presented
ties of 2D flames. We show that some important propertiesn Figs. 1 and 2. The scaled velocity incredsg/U¢—1 of
of the curved 3D flames are qualitatively different from thea curved stationary flame in a cylindrical tube is shown in
properties of 2D flames. Particularly, we obtain a regime ofig. 1 versus the scaled inverse tube raddisR;/R. The
strong initiation of the LD instability in narrow tubes, when Velocity of a curved 2D flame in a tube with ideal walls Egs.
all perturbation modes of a small amplitude are stable, but &) and(5) is presented in Fig. 1 for comparison. It is seen
curved stationary flame is still possible. Another importantTom Fig. 1 that for the case of a cylindrical tube two solu-

point is the unlimited increase of the flame velocity with the ions are possible with larger and smaller velocity increase.
increase of the tube diameter These solutions correspond to the configurations of a convex

Let us consider propagation of a curved axisymmetric stafi@me front(the solution with the larger velocityand a con-
. - ; I cave flame frontthe solution with the smaller velocityThe
tionary flame f(x,t)=F(r)—(U,— Ut in a cylindrical

tube of a radiuR w?t_h ideally adiabatic walls. In this case Itzp;:?gl séh?opretshgf;gtraa(r:ﬁent(é?v\;aaﬁlréd:((:)(.)g.vgrxhza\;réle;cﬁl;eins_hown
the boundary conditions at the_ walls an_d at th_e tube aXI¥rease for a curved 3D flame is much larger than the velocity
becomedF/dr=0 for r=0R. It is convenient to introduce j,crease for a 2D flame. Particularly, fé=0.5 when the

the dimensionless variables and parametéts aS™*(Uy  curved flame front results from the development of perturba-
—U)/Us, ¢=aF/(SR), {=r/R, 6=R./R, where R.  tions of a wavelength. =2\ the increase of the flame ve-
=aj\ /2w is the critical radius for which thermal conduc- |ocity for a convex 3D flame is almost doubled compared to
tion suppresses growth of small perturbatioagjs the first  the velocity increase of a 2D flame. For a flame in a gaseous
of the rootsa, of the equationdJy(a)/da=0, Jy is the fuel with expansion coefficients as large@s= 10 it implies
Bessel function of the zeroth order. For the introduced varithat the velocity of a curved 3D flame may increase by quite
ables the nonlinear equation becomes a noticeable factod,,~1.7U; .
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FIG. 2. The shapes of the convéa) and concaveb) curved flames with cylindrical symmetry for the parameter vadseR./R
=0.55.

Figure 1 demonstrates that there are some features of 3Bessel harmonic is the principal ogg # 0. For sufficiently
curved flames which are qualitatively different from that of wide tubegsufficiently small§) smooth solutions of Eq7)
2D flames. One of them is the existence of curved axisymwith ¢,;=0 are possible, which have several humps and
metric stationary flames for narrow tub@s<R, (6>1). For ~ cusps. Obviously, velocities of such solutions may be ob-
such a narrow tube all small perturbations of a planar flaméained from the velocity shown in Fig. 1 by the appropriate
front permitted by the boundary conditions at the tube wallsscaling of thes axis. . _
belong to the stable domain of the dispersion relation(Eq. Since Eq.(2) is just a phenomenological extrapolation of
By this reason curved stationary flames obtained fol. =~ @ nonllr_]ear equation derived in the peculiar I|m|t. of a small
may be interpreted as possibility of strong initiation of the &pansion coefficien®—1<1 [9], one may doubt if the de-
LD instability in 3D configurations. Strong initiation implies SC'ibed properties of curved axisymmetric 3D flames are not

that a flame front is stable against perturbations of an infinilUst an artifact of the nonlinear model. To check this we

tesimal amplitude, while perturbations of some finite amp”_perform_ed n_um(_encal simulations of curved axisymmetric
tude may grow with time and lead to the configuration of aflames_ln cyIancaI tbes for t_he complete set of the hydro-
curved stationary flame dynamic equations of a reacting flow. The numerical code

ignplements finite volume approximation of the hydrody-

The dependence of the flame velocities on the tube radius > o :
is also quite different for the 2D and 3D curved flames. Then""m'c""I equations; s¢] for the details of the code and the
umerical method. The numerical simulations of curved axi-

difference is especially well pronounced for the concave 30! . . N .
flame, which exhibits monotonous increase of the flame yeSymmetric flames in cylindrical tubes support the physical

locity with the increase of the tube radius. In this sense théeSUItS obtained on the basis of B2) (see Fig. 1. Thus, the

dependence of the convex flame velocity on the tube radiu§;OIUtion of th.e ge_neralized nonlinear equat(ﬁm provides a
presents some features of a 2D curved flame and some fe ood approximation for the flame velocity and may be help-

tures of a concave flame. Eor tubes of moderate width thidl in complicated 3D configurations, when direct numerical
velocity dependence for the convex flame exhibits locaSimulations consume too much time. .
maxima and minima like the velocity of a 2D curved flame. Among the obtained properties of the curved 3D flames in

The points of maxima and minima of the convex flame Ve_cyIindricaI tubes the unlimited increase of the flame velocity

locity found numerically can be associated with the criticaIWIth the increase of the tube radius is of special physical

points of the Bessel functionl,: 6=a,/a,~0.546; & importance, since it implies that the flame velocity in wide
—a,/a.~0.376' §=a./a,~0 2880.etc Fér vside.tube,s the tubes may become much larger than the velocity of the pla-
—dp/az=u. y O~ dp/dg=~ V. ’ .

velocity of a convex flame increases monotonously with thd'a’ laminar flame. In a sense, it may be one of the explana-
tube radius similar to the concave flames. At the same timéonS of the spontaneous flame acceleration and the detona-

the increase of the flame velocity cannot be identified as th on triggering by the agcelergtmg flames in tubes, which has
velocity increase expected for the fractal flames in wide een observed many times in experimejts
tubes[15—17: all calculated velocities correspond to smooth ~ This work was supported in part by the Swedish National
flame shapes with one hump or one cusp at the tube axi®efense Research EstablishmérDA), by the Swedish Na-
while the fractal structure implies many cascades of humpsional Board for Industrial and Technical Development
and cusps of different sizes, imposed one on another. (NUTEK), Grant No. P2204-2, by the Swedish Natural Sci-
Figure 1 shows the velocities of curved stationary axisym-ence Research Coun¢iNFR), Grant No. E-AD/EG 10297-
metric flames with only one cusp or one hump when the firsB16, and by the Swedish Royal Academy of Science.
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